

The University of Manchester

MANCHESTER CANCER RESEARCH CENTRE

Scientific reasoning in oncology at the age of Large Language Models (LLMs)

André Freitas & Neuro-Symbolic Al Group

AstraZeneca, October 2023

Neuro-symbolic Al Group

Analytical limits in cancer research

Fundamental tensions

Abundance of reported studies	VS.	Scarcity of quality, individual-level patient data
Interventional (RCT)	VS.	Observational (RWD)
More data per patient (p >> n)	VS.	More specific phenomena (personalised response, smaller cohorts)
Mechanistic phenomena	VS.	Statistical inference

Hypotheses Questions

New context

New data

Hypotheses Questions

New context

New data

Hypotheses Questions

New context

Select relevant background knowledge

New data

New context

Elicit relevant patterns

Continuous

remission

Time

Contrast

to new data

Cell number

<u>Select</u> relevant background knowledge

New data

Hypotheses

Questions

New context

<u>Select</u> relevant background knowledge

New data

Hypotheses

Questions

New context

New data

Hypothesise (Formally) Extend an explanation existing model **Corroborate** with previous evidence Continuous $\frac{dx_{1}(t)}{dt}=x_{2}\left(t\right)$ Cell number remission $\frac{dx_2(t)}{dt} = ax_1(t) - bx_2(t)$ Select $d^2x_1(t)$ $dx_2(t)$ relevant Time dt^2 dt background knowledge Contrast Translate to a to new data computable expression function y = simulate CRS(x1, x2, t) **Elicit** relevant patterns ... end Solve, Simulate

Questions

Hypotheses

New context

New data

Resource-intensive.

Requires diverse and highly specialised skill sets beyond the core domain of expertise.

Implies: Compromises all over the pipeline.

Hypothesise (Formally) Extend an explanation existing model **Corroborate** with previous evidence Continuous $\frac{dx_{1}(t)}{dt}=x_{2}\left(t\right)$ Cell number remission $\frac{dx_2(t)}{dt} = ax_1(t) - bx_2(t)$ Select $d^2x_1(t)$ $dx_2(t)$ relevant Time dt^2 dt background knowledge Contrast Translate to a to new data computable expression function y = simulate CRS(x1, x2, t) **Elicit** relevant patterns ... end Solve, Simulate

Questions

Hypotheses

New context

New data

Hypotheses

Questions

New context

New data

Hypotheses

Questions

New context

New data

Hypotheses Questions

New context

New data

Symbolic regression

Hypotheses

Questions

New context

New data

Hypotheses

Questions

New context

New data

Common denominator

"miR-155 Activates Cytokine Gene Expression in Th17 Cells by Regulating the DNA-Binding Protein Jarid2 to Relieve Polycomb-Mediated Repression."

	Patients with SARS-Cov-2 confirmed by PCR	Patients without SARS- Cov-2 confirmed by PCR
Median age (IQR)—years	63 (53–72)	60 (49–73)
Male	787/1,309 (60.1%)	90/167 (53.9%)
Race/ethnicity—Hispanic	577/1,268 (45.5%)	62/167 (37.1%)
Race/ethnicity—African American	278/1,268 (21.9%)	46/167 (27.5%)
Race/ethnicity—White	277/1,268 (21.8%)	43/167 (25.7%)
Race/ethnicity—Asian	73/1,268 (5.8%)	5/167 (3.0%)
Race/ethnicity—Other	63/1,268 (5.0%)	11/167 (6.6%)
Obesity (BMI ≥30)	465/1,176 (39.5%)	34/149 (22.8%)ª
Comorbidities—hypertension	420/1,268 (33.1%)	67/167 (40.1%)
Comorbidities—diabetes	293/1,268 (23.1%)	34/167 (20.4%)
Comorbidities—CKD	167/1,268 (13.2%)	27/167 (16.2%)

Del Valle et al. , *Nature Medicine* (2020)

$$\frac{dx_1(t)}{dt} = x_2(t)$$

$$\frac{dx_2(t)}{dt} = ax_1(t) - bx_2(t)$$

$$\frac{d^2x_1(t)}{dt^2} = \frac{dx_2(t)}{dt}$$

where $x_1(t)$ is the serum concentration of cytokine and its rate of change by $x_2(t)$

Common denominator: Language & Abstraction!

\$

Bernie Madoff was a convicted American fraudster who ran a Ponzi scheme that is considered to be one of the largest financial frauds in history. While Nietzsche's philosophy includes many concepts, it is unlikely that Madoff's life embodies Nietzschean values in any meaningful way.

ムマ

One of Nietzsche's key ideas is the concept of the Übermensch, or the "Superman." The Übermensch is an idealized human being who transcends traditional values and lives a life of creativity, self-realization, and personal growth. Madoff, on the other hand, lived a life of deception, dishonesty, and manipulation. He betrayed the trust of his clients, friends, and family members and caused them significant financial harm.

Furthermore, Nietzsche's philosophy emphasizes the importance of personal responsibility and self-determination. Madoff's actions, on the other hand, were driven by a desire for personal gain, without regard for the consequences for others.

Overall, it would be inaccurate to say that Madoff's life embodies Nietzschean values, as his actions were antithetical to many of the core ideas of Nietzsche's philosophy.

A lot happened here

Identifying and aligning elements of **intent** in the instruction.

- Identifying essential attributes and events of the target character.
- Identifying **essential attributes** of the **target ethical framework**.
- **Relating** these attributes (e.g. contrasting).
- **Committing to a conclusion.**
- Sticking to what is relevant for the argument.
- Organising into an **argumentation structure**.
- Perfect fluency, meaning and thematic coherence.

Describe the dynamic behaviour of cytokines using differential equations.

Let's consider a simple model where a stimulus, S, induces the production of a cytokine, C. The rate of production and the rate of degradation can be modeled using ordinary differential equations.

- 1. **Production Rate**: The rate of cytokine production might be proportional to the stimulus, S. The proportionality constant is k_1 . Thus, the production rate is $k_1 \times S$.
- 2. Degradation Rate: Cytokines may degrade over time, and the degradation rate might be proportional to the amount of cytokine present. The proportionality constant is k_2 . Thus, the degradation rate is $k_2 \times C$.

Using the above two rates, the differential equation for the cytokine dynamics can be written

as: $rac{dC}{dt} = k_1 imes S - k_2 imes C$

Where:

- $\frac{dC}{dt}$ is the rate of change of the cytokine concentration over time.
- * k_1 is the rate constant for cytokine production.
- * k_2 is the rate constant for cytokine degradation.
- ${}^{\scriptstyle \bullet}$ S is the stimulus.

Α

Can you add to the model:

Ts : antigen+ tumour Tr : antigen-tumour C : CAR T cells B : bystander cells

- 1. Dynamics of T_s and T_r (antigen+ and antigen- tumors respectively)
- The growth rate of both tumors might be logistic to take into account carrying capacity:

$$\frac{dT_s}{dt} = r_s \times T_s \times \left(1 - \frac{T_s + T_r}{K}\right) - k_s \times C \times T_s$$
$$\frac{dT_r}{dt} = r_r \times T_r \times \left(1 - \frac{T_s + T_r}{K}\right)$$

Where:

- r_s and r_r are the growth rates for T_s and T_r , respectively.
- K is the carrying capacity of the tumor environment.
- * k_s is the rate at which CAR T cells kill antigen+ tumor cells.
- 1. Dynamics of CAR T cells (\boldsymbol{C})

 $rac{dC}{dt} = p_c imes T_s - d_c imes C$ Where:

- * p_c is the proliferation rate of CAR T cells in the presence of antigen+ tumor cells.
- * d_c is the natural death rate of CAR T cells.
- 1. Dynamics of bystander cells (B) $rac{dB}{dt}=r_b-k_b imes C imes B$ Where:
- * r_b is the growth rate of bystander cells.
- * k_b is the rate at which CAR T cells affect bystander cells.

Can you add the following constraints to the model:

Ts: co-grow with Tr; non-linear kill by CAR T cells; non-linear kill term by bystander cells

•Tr: co-grow with Ts; non-linear kill term by bystander cells

•C: initial injection; linear death; Michaelis-Menten co-grow and competition with B; bilinear exhaustion from antigen+ stim ~CTs

•B: constant recruitment; linear death; M-M cogrow and competition with B; bilinear exhaustion from antigen+ stim ~C(Ts+Tr) 1. Dynamics of T_s and T_r (antigen+ and antigen- tumors respectively) For T_s : $\frac{dT_s}{dt} = r_s \times T_s \times \left(1 - \frac{T_s + T_r}{K}\right) - \alpha_s \times \frac{C \times T_s}{K_m + T_s} - \beta_s \times B \times T_s$ For T_r : $\frac{dT_r}{dt} = r_r \times T_r \times \left(1 - \frac{T_s + T_r}{K}\right) - \beta_r \times B \times T_r$

Where:

- * α_s is the non-linear killing rate of T_s by CAR T cells.
- * β_s and β_r are the non-linear killing rates of T_s and T_r by bystander cells.
- K_m is the Michaelis-Menten constant.
- 1. Dynamics of CAR T cells (C)

$$rac{dC}{dt} = p_c imes rac{T_s}{K_m + T_s} - d_c imes C - \gamma_c imes C imes (T_s + T_r) - \delta imes B imes C$$

Where:

- * γ_c is the bilinear exhaustion rate of CAR T cells due to antigen stimulation.
- * δ is the competition rate between CAR T cells and bystander cells.

1. Dynamics of bystander cells (B)

$$rac{dB}{dt} = r_b - d_b imes B + p_b imes rac{B}{K_m + B} - \gamma_b imes B imes (T_s + T_r)$$

Where:

- r_b is the constant recruitment rate of bystander cells.
- * d_b is the linear death rate of bystander cells.
- * p_b is the Michaelis-Menten co-growth rate.
- γ_b is the bilinear exhaustion rate of bystander cells due to antigen stimulation.

Can you solve the dynamical system above and plot the target quantities over time?

Α

	import numpy as np
	<pre>from scipy.integrate import odeint</pre>
	<pre>import matplotlib.pyplot as plt</pre>
	<pre>def system(y, t, params): Ts, Tr, C, B = y rs, rr, K, alpha_s, beta_s, beta_r, Km, pc, dc, gamma_c, delta, rb, db,</pre>
	dTs_dt = rs * Ts * (1 - (Ts + Tr) / K) - alpha_s * C * Ts / (Km + Ts) - dTr_dt = rr * Tr * (1 - (Ts + Tr) / K) - beta_r * B * Tr dC_dt = pc * Ts / (Km + Ts) - dc * C - gamma_c * C * (Ts + Tr) - delta dB_dt = rb - db * B + pb * B / (Km + B) - gamma_b * B * (Ts + Tr)
	<pre>return [dTs_dt, dTr_dt, dC_dt, dB_dt]</pre>
	<pre># Parameters (these values are just placeholders; use your actual data or exparams = [1, 1, 1000, 1, 1, 1, 1, 1, 0.1, 1, 1, 1, 0.1, 1, 1]</pre>
	# Initial conditions (again, placeholders)
22	Ts0 = 100
	TrO = 100
	CO = 100
	BO = 100
	y0 = [Ts0, Tr0, C0, B0]
	# Time grid
	t = np.linspace(0, 10, 100)
	# Solve using odeint
	<pre>solution = odeint(system, y0, t, args=(params,))</pre>
	# Plot
	<pre>plt.figure()</pre>
	<pre>plt.plot(t, solution[:, 0], label='Ts')</pre>
	<pre>plt.plot(t, solution[:, 1], label='Tr')</pre>
	<pre>plt.plot(t, solution[:, 2], label='C')</pre>
	<pre>plt.plot(t, solution[:, 3], label='B')</pre>
	<pre>plt.xlabel('Time')</pre>
	<pre>plt.ylabel('Quantity')</pre>

plt.legend()
plt.show()

Abductive Reasoning

Abductive inference

- First introduced by Peirce (1903).
- Inference to the best explanation.
- "Abduction is the mechanism via which we generate hypotheses about what we observe."
- Dialogues closely with assumed background knowledge.

Veen, Creative leaps in theory: the might of abduction (2021)

What Sherlock does well.

Evidence-based inference

Cytokine release syndrome (CRS):

Significant adverse event of T cell-engaging therapies.

Need: Predictive models for CRS

Problem: Lack of patient-level datasets.

Can one explore relevant evidence in the literature?

Bogatu et al. (JBI, 2023)

Adapted from: https://human-centered.ai/project/explainable-ai-fwf-32554/

Inference (NLI)

Knowledge

Questions

Cytokine release syndrome

Problem: small cohorts

Bogatu et al. (JBI, 2023)

Cytokine release syndrome

Integrating evidence from the literature

Problem: small cohorts

Days in CAR T cells infusion

Bogatu et al. (JBI, 2023)

Cytokine release syndrome

Integrating evidence from the literature

Problem: small cohorts

Days in CAR T cells infusion

Bogatu et al. (JBI, 2023)

Cytokine release syndrome

Integrating evidence from the literature

Problem: small cohorts

Davila Marcoa L., et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in b cell acute lymphoblastic leukemia Sci. Transl. Med., 6 (224) (2014), 10.1126/scitransImed.3008226 (ISSN: 1946-6234, 1946-6242)

Biomark Davila e Hay et a Hong et Hu et al Jacobsc Kalos et Liu et al Neelapu Porter e Sang et Shah et Teachey Topp et Turtle et Yan et a Yan et a Zhao el

IL-2					
IL-4					
IL-6					
IL-8					
IL-10					
IL-15					
IL-2Rα					
TNF-α					
IFN-y					
GM-CS					
CRP					
ferritin					
D-dimer					
VWF					
Ang-2					
MCP-1					
granzyn					
TNFRp!					
MIP1β					
MIP1α					
IL-17					
sIL6R					

Demo Wysocki & Wysocka

Not possible one year ago!

Cytokine release syndrome

Integrating available mechanistic knowledge

$$\frac{dS}{dt} = S_{in} - k_s S(t) - \beta V(t) S(t) \qquad \text{Describin} \\
\frac{dI(t)}{dt} = \beta V(t) S(t) - k_I I(t) - \gamma x(t) I(t) \\
\frac{dV(t)}{dt} = v_{in} I(t) - k_V V(t) \\
\frac{dx(t)}{dt} = x_{in} - k_1 x(t) + \gamma_1 x(t) I(t) + b_1 \frac{x(t)}{c_1 + x(t)} (x(t) - m) (y_1 - y(t)) (y(t) - y_2) \\
\frac{dy(t)}{dt} = y_{in} - k_2 y(t) + b_2 \frac{a_1}{a_2} \frac{y(t) x(t)}{c_2 + x(t)}$$

Describing interactions between immune cells and cytokines

Parameter	Description	Value	Units
S(0)	Initial size of population of susceptible cells	1	vol.
1(0)	Initial size of population of infected cells	0	vol.
V(0)	Initial size of population of virus particles	0	vol.
x(0)	Initial size of population of immune cells	0.07	vol.
y(0)	Initial size of population of cytokines	0.18	vol.
S_{in}	Production rate of susceptible cells, $S(0) \times k_s$	0.01	vol./time
k_s	Normal decay rate of susceptible cells	0.01	1/time
k_{I}	Normal decay rate of infected cells	0.01	1/time
γ	Rate of elimination of infected cells by immune cells	0.5	1/vol/time
V _{in}	Rate of viral replication in infected cells	0.1	1/time
k_{ν}	Natural virus decay rate	0.1	1/time
β	Rate at which virus infects susceptible cells	0.1	1/vol./time
x_{in}	Normal production of immune cells, $x(0) \times k_1$	7e-4	vol./time
k_1	Normal decay rate of immune cells	0.01	1/time
γ_1	Conversion of immune cell kill of infected cells into immune cell proliferation	0.05	1/vol/time
т	Threshold of activation of additional immune cell proliferation (second touch)	0.1	vol.
\mathcal{Y}_{in}	Cytokine production rate, $y(0) \times k_2$	0.018	vol./time
Y 1	Cytokine-mediated threshold of immune cell expansion	1	vol.
y 2	Cytokine-mediated threshold of immune cell regulation	3	vol.
<i>b</i> ₁	Rate of additional immune cell expansion as mitigated by cytokines	1	1/(time*vol. ³)
b ₂	Rate of cytokine stimulation by immune cells	1	1/time
<i>k</i> ₂	Normal cytokine decay rate	0.1	1/time
C1	Population size that results in half-maximal growth of x(t) in response to cytokine stimulation	1	vol.
C2	Population size that results in half-maximal increase in production of cytokines in response to stimulation by immune cells	1	vol.

Very abstract intent!

Kareva et al., bioarxiv: 2022.02.15.48058 (2022) Hopkins et al., IFAC (2018)

Equations, numerical values

<u>Code</u>

Evidence Retrieval

Patient-Trial Matching: Trial Finder

StatementPatients living in the San Francisco area withErbB2+ breast cancer, a body weight > 60kg, and a history of treatment withCyclophosphamide in the last year, are
eligible for this clinical trial.

CLINICAL TRIALS TRANSFORMATION INITIATIVE	

~ 375,600

CT reports

	Clinical Trial Report Eligibility Criteria
Ι	nclusion Criteria:
•	HER2-positive T1 histologically confirmed invasive carcinoma of the breast
•	Body weight > 110 lbs
•	Age ≥ 60 years
•	Patients with a history of chemotherapy treatment within the last 24 months.
•	Patients must be California residents
]	Exclusion Criteria:
•	Pregnant women

Jullien et al. (Semeval 2022)

Jullien et al. (Semeval 2021)

Patient-Trial Matching: Trial Finder

Filter studies on cancer type	Map view of sites	Study details	Shortlist (0 studies) About	Legal				
Colorectal								
✓ Include matches on solid	🕹 Download	d table	Shortlist selected studies					
tumour?						5	Search:	
Rank matching studies based on genetic alterations KRAS mutation	Brief title			Matching alteration(s)	Matching cancer type(s)	Eligibility	Drug rationale	Est. completior date
 (Use Entrez symbol, e.g. ERBB2 instead of HER2) Filter matching studies on study drug mechanisms ☐ Hide matches on cancer type alone? ✓ Show sites still in setup? 	Sotorasib Activity in Subjects With Advanced Solid Tumors With KRAS p.G12C Mutation (CodeBreak 101)			KRAS mutation	Advanced Solid Tumors	Stratified on KRAS mutation	Study intervention (Sotorasib) targets KRAS	12 Jul 2026
	Phase 3 Study of MRTX849 With Cetuximab vs Chemotherapy in Patients With Advanced Colorectal Cancer With KRAS G12C Mutation (KRYSTAL-10)			KRAS mutation	Advanced Colorectal Cancer; Metastatic Colorectal Cancer	Enrolling subjects with KRAS mutation	Study intervention (MRTX849) targets KRAS	30 Apr 2024
	Phase I Trial of VS-6766 Alone and in Combination With Everolimus			KRAS mutation	Solid Tumours	Stratified on KRAS mutation	Study drug (VS-6766) targets downstream gene(s) (RAF1)	28 Feb 2023
	A Study to Evaluate GDC-6036 Alone o or Metastatic Solid	e the Safety, Pha r in Combinatio l Tumors With a	armacokinetics, and Activity of n in Participants With Advanced KRAS G12C Mutation	KRAS mutation	Advanced Solid Tumors; Colorectal Cancer	Enrolling subjects with KRAS mutation	Study drug (Inavolisib) targets downstream gene(s) (PIK3CA)	30 Nov 2024

Generating explanations

Abductive Natural Language Inference (ANLI)

Inference to the best <u>explanation</u> (facts, evidence)

<u>Claim:</u> Specialized cells protect the human body from diseasecausing microbes by producing chemicals that destroy the microbes.

~10.000 facts

Abductive Natural Language Inference (ANLI)

Inference to the best <u>explanation</u> (facts, evidence)

<u>Claim:</u> Specialized cells protect the human body from disease-causing microbes by producing chemicals that destroy the microbes.

~10.000 facts

Abductive Natural Language Inference (ANLI)

Inference to the best <u>explanation</u> (facts, evidence)

<u>**Claim:</u>** Specialized cells protect the human body from disease-causing microbes by producing chemicals that destroy the microbes.</u>

Encoding inference relations

~10.000 facts

Scientific inference

- Step-wise explicit (verbalised) inference.
- Formal, verifiable argument & explanation.
- Preserving the positive aspects of LLMs.
- Improving control.

$\Gamma \vDash \Phi$

 Γ semantically entails Φ

- interpretability
- verifiability
- control (inference guarantees)

Expert-level scientific inference & explanation

Scientific inference

- Step-wise explicit (verbalised) inference.
- Formal, verifiable argument & explanation.
- Preserving the positive aspects of LLMs.
- Improving control.

claim

(Loss of BRCA2) **may cause** (increased genomic instability).

Why?

claim

(Loss of BRCA2) **may cause** (increased genomic instability).

Why?

claim

(Loss of BRCA2) **may cause** (increased genomic instability).

Why?

claim

(Loss of BRCA2) **may cause** (increased genomic instability).

Why?

(Loss of BRCA2) **causes** (the cell) to default to (NHEJ repair processes).

Thayaparan, Valentino, Freitas, Findings of the ACL (2021) Valentino, Thayaparan, Ferreira, Freitas, AAAI (2022)

On Reasoning Infrastructures

Lunar

Emerging foundations for *industrialised scientific inference* Universal framework for *integrating and organising heterogeneous evidence*

Large Language Models

Are a **(monumental!)** game-changing foundation. Transformers are an efficient substrate for modelling language and reasoning. Fluidity/lower impedance between representation modalities:

... -> Text -> Structure -> Equation -> Code -> ...

Alone they are not fit for purpose for scientific reasoning.

Controlling reasoning Scientific reasoning requires complex pipelines. Robust methods already exist to extend LLMs in the direction of rigorous reasoning. (multiple models, chains/trees-of-thought, symbolic augmentation, retrieval augmentation – text, tables and graphs, toolformers, differentiable symbolic solvers) Need for a coordination infrastructure.

Very exciting times to do AI for Science!

Thank you for your attention!

Generously supported by:

Engineering and Physical Sciences Research Council

contact: andre.freitas@manchester.ac.uk